http://en.wikipedia.org/wiki/Embryonic_stem_cell
According to a 2002 article in PNAS, "Human embryonic stem cells have the potential to differentiate into various cell types, and, thus, may be useful as a source of cells for transplantation or tissue engineering."
Current research focuses on differentiating ES into a variety of cell types for eventual use as cell replacement therapies (CRTs). Some of the cell types that have or are currently being developed include cardiomyocytes (CM), neurons,hepatocytes, bone marrow cells, islet cells and endothelial cells.[8] However, the derivation of such cell types from ESs is not without obstacles and hence current research is focused on overcoming these barriers. For example, studies are underway to differentiate ES in to tissue specific CMs and to eradicate their immature properties that distinguish them from adult CMs.
Besides in the future becoming an important alternative to organ transplants, ES are also being used in field of toxicology and as cellular screens to uncover new chemical entities (NCEs) that can be developed as small molecule drugs. Studies have shown that cardiomyocytes derived from ES are validated in vitro models to test drug responses and predict toxicity profiles.ES derived cardiomyocytes have been shown to respond to pharmacological stimuli and hence can be used to assess cardiotoxicity like Torsades de Pointes.
ES-derived hepatocytes are also useful models that could be used in the preclinical stages of drug discovery. However, the development of hepatocytes from ES has proven to be challenging and this hinders the ability to test drug metabolism. Therefore, current research is focusing on establishing fully functional ES-derived hepatocytes with stable phase I and II enzyme activity.
Researchers have also differentiated ES into dopamine-producing cells with the hope that these neurons could be used in the treatment of Parkinson’s disease.ESs have also been differentiated to natural killer (NK) cells and bone tissue.Studies involving ES are also underway to provide an alternative treatment for diabetes. For example, D’Amour et al. were able to differentiate ES into insulin producing cells.
No comments:
Post a Comment