Search This Blog

Monday, 28 April 2014

Genetics



Gregor Johann Mendel (July 20, 1822 – January 6, 1884) was a German-speaking Silesian scientist andAugustinian friar who gained posthumous fame as the founder of the modern science of genetics. Though farmers had known for centuries that crossbreeding of animals and plants could favor certain desirable traits, Mendel's pea plant experiments conducted between 1856 and 1863 established many of the rules of heredity, now referred to as the laws of Mendelian inheritance.

Rediscovery of Mendel's work
Mendel's work was rejected at first in the scientific community, and was not widely accepted until after he died. During his own lifetime, most biologists held the idea that all characteristics were passed to the next generation through blending inheritance, in which the traits from each parent are averaged together. Instances of this phenomenon are now explained by the action of multiple genes with quantitative effects. Charles Darwin tried unsuccessfully to explain inheritance through a theory of pangenesis. It was not until the early 20th century that the importance of Mendel's ideas was realized.
By 1900, research aimed at finding a successful theory of discontinuous inheritance rather than blending inheritance led to independent duplication of his work by Hugo de Vries and Carl Correns, and the rediscovery of Mendel's writings and laws. Both acknowledged Mendel's priority, and it is thought probable that de Vries did not understand the results he had found until after reading Mendel.Though Erich von Tschermak was originally also credited with rediscovery, this is no longer accepted because he did not understand Mendel's laws.Though de Vries later lost interest in Mendelism, other biologists started to establish genetics as a science. All three of these researchers, each from a different country, published their work rediscovering Mendel's work within a two-month span in the Spring of 1900.
Mendel's results were quickly replicated, and genetic linkage quickly worked out. Biologists flocked to the theory; even though it was not yet applicable to many phenomena, it sought to give a genotypic understanding of heredity which they felt was lacking in previous studies of heredity which focused on phenotypic approaches.

No comments:

Post a Comment